
Evaluation of a few security audit tools for Linux

Technical Report

A. Apvrille
Open Systems Lab, Ericsson Research Canada,

8400 Décarie Blvd, Town of Mount-Royal, (QC) Canada H4P 2N2.
{Axelle.Apvrille}@Ericsson.ca

April, 11 2003

1 Introduction

[DSI], a security framework for distributed environments, offers various security
services such as Distributed Access Control (DisAC), Distributed Confidentiality
and Integrity (DisCI).

The project now plans to add another service: a secure auditing service,
designed for carrier-class clusters.

As a first step, this report summarizes features of current major auditing
tools for Linux, trying to highlight their pros and cons. This report is intended
as background information to design an adequate auditing service for DSI, it
does not detail how DSI’s auditing service will be developped.

Warning: the opinions expressed in this technical report are only mine, from
my own comprehension of the tools I have evaluated. They may be wrong: please
do not hesitate to send feedback or comments.

2 SNARE

2.1 In brief

Name SNARE System iNtrusion Analysis and Reporting Environ-
ment

URL https://sourceforge.net/projects/snare/
Tested version(s) snare-core 0.9.1 and snare 0.9
Support Sourceforge’s website does not seem very active, but mail

can be sent to IntersectAlliance.

2.2 Installation

Two packages are needed: the snare-core package (which has the core func-
tionalities) and the snare package if you want a GUI.

1



2 Evaluation of security audit tools - v0.4 - A. Apvrille

For the snare-core package, no configure script, however the usual make
clean, make, make install work without any problem. Basically, the fol-
lowing files get installed:

• /usr/bin/auditd: the audit daemon

• /etc/init.d/audit: script to start/stop auditing. Inserts an auditmodule
kernel module.

• /etc/audit/audit.conf: the configuration file.

As for the GUI snare package, strangely, the installation failed with the
source tar.gz package1, so the RPM binary packaged was used.

2.3 Auditing modes

SNARE offers two different auditing modes:

• the kernel mode, where a selection of system calls are audited ;

• and the objective mode where user can define filters of various events to
be logged.

2.3.1 Auditing kernel activity

User can select which system calls he wishes to audit. Depending on which
system calls are selected (and how many) this may introduce heavy logging. For
instance, the simple fact of loading emacs generated 227 logs, more precisely 1
execve system call and 226 open system calls of various libraries, configuration
files etc.

Logs are sent to a file in human readable format, and may be displayed by
the GUI (with a coloured light according to severity). Logs in figure 1 show an
execve() event launched by user lmcaxpr, consisting in a call to /usr/bin/
emacs from a bash shell.

Logs in figure 2 show logs generated by an ls command. In this example,
the auditing of the open() system call has been turned off, so we only see a log
for the execve() call, and one for the exit().

Finally, a buffer overflow exploit from Aleph One [Al0] was tested over
SNARE. The buffer overflow simply calls the vulnerable program with a very
specific string as argument, that overflows an internal buffer of the program.
This well-chosen string makes vulnerable spawn a bash shell. Generated logs
are shown at figure 3. In this case, we do detect a new shell is launched by
vulnerable.

1An error at build occurs, even when using the right versions of autotools.



Evaluation of security audit tools - v0.4 - A. Apvrille 3

glacier LinuxAudit event,execve(),
Thu Feb 20 17:04:40 2003 user,lmcaxpr(500),install(502),
lmcaxpr(500),install(502) process,1838,bash
path,/usr/bin/emacs
arguments,emacs return,0 sequence,4297

glacier LinuxAudit event,open(O_RDONLY),
Thu Feb 20 17:04:40 2003 user,lmcaxpr(500),install(502),
lmcaxpr(500),install(502) process,1838,emacs
path, /etc/ld.so.preload return,-2 sequence,4298
...

glacier LinuxAudit event,open(O_RDONLY),
Thu Feb 20 17:04:51 2003 user,lmcaxpr(500),install(502),
lmcaxpr(500),install(502) process,1838,emacs
path, /usr/share/emacs/21.2/etc/splash.xpm return,3
sequence,4524

Figure 1: Sample kernel logs: emacs is launched from a shell.

2.3.2 Objective auditing

In this mode, the administrator can configure special events to log such as
access to given files, from given users, executing a given program, accessing the
network, changing identity etc. Those filters are customizable. The amount of
logs is still pretty heavy, specially if you’re using a graphical environment (for
instance, if you’ve got a clock, date is called every minute etc). See logs figure
4.

Tests of objective mode have also been made using the same buffer overflow
exploit as for kernel tests (§2.3.1). Unfortunately, the default filters provided
with SNARE were unable to detect either the opening of the vulnerable program
nor its launching of a new shell. To detect the anomaly, one should remove all
default filter and add (1) one filter for starting /stopping programs for all users,
and (2) another filter for opening programs (for all users).

2.4 A word about how system calls are audited

SNARE does not require kernel patching (which is really cool ;-)), it is just
loaded as a kernel module. To audit system calls, it works the following way:

• until 2.4.17 (included): the kernel (kernel/ksyms.c) exports a table
called sys call table which contains a list of pointers to various system calls
(open, close, execve...). This table is made available to external modules:

#ifndef __mips
EXPORT_SYMBOL(sys_call_table);



4 Evaluation of security audit tools - v0.4 - A. Apvrille

glacier LinuxAudit event,execve(),
Thu Feb 20 17:16:48 2003 user,lmcaxpr(500),install(502),
lmcaxpr(500),install(502) process,1874,bash
path,/bin/ls arguments,ls --color=tty
return,0 sequence,6610

glacier LinuxAudit event,exit(),Thu Feb 20 17:16:48 2003
user,lmcaxpr(500),install(502),lmcaxpr(500),install(502)
process,1874,ls return,0 sequence,6611

Figure 2: Sample kernel logs generated by the ls UNIX command, with logs to
open() turned off

glacier LinuxAudit event,execve(),
Mon Feb 24 11:06:03 2003 user,lmcaxpr(500),
install(502),root(0),install(502) process,2634,bash
path,/home/lmcaxpr/prog/bof/vulnerable arguments,./vulnerable
return,0 sequence,72128
...

glacier LinuxAudit event,execve(),
Mon Feb 24 11:06:03 2003 user,lmcaxpr(500),
install(502),root(0),install(502)
process,2634,vulnerable path,/bin/bash arguments,
/bin/sh return,0 sequence,72132

Figure 3: Kernel logs when launching a buffer overflow exploit.

#endif

As Snare is loaded as a kernel module, and as this table is available to
such modules, it just simply replaces the pointers of the various system
call by their own audited system calls. And their own audited system calls
are basically a call to the original system call and auditing information.

• from 2.4.18 +: unfortunately the system call table is no longer made
available to external modules (for security reasons concerning rootkits).
It’s quite simple to patch the kernel and export the table again, but
SNARE has chosen another (trickier) solution. They have noticed that the
system call table can actually be retrieved from the boot cpu data struc-
ture in asm/processor.h. This fix is a real hack - of course, probably one
day it won’t work any longer - but it’s a workaround.



Evaluation of security audit tools - v0.4 - A. Apvrille 5

glacier LinuxAudit objective,clear,
Thu Feb 20 17:02:27 2003,The program /usr/bin/emacs has been
executed by the user lmcaxpr event,execve(),
Thu Feb 20 17:02:27 2003 user,lmcaxpr(500),install(502),lmcaxpr(500),
install(502) process,1830,bash path,/usr/bin/emacs
arguments,emacs return,0 sequence,3665

glacier LinuxAudit objective,clear,
Thu Feb 20 17:02:29 2003,The process emacs, owned by the user lmcaxpr
, has exited event,exit(),Thu Feb 20 17:02:29 2003
user,lmcaxpr(500),install(502),lmcaxpr(500),install(502)
process,1830,emacs return,0 sequence,3889

Figure 4: Sample objective logs when launching emacs

2.5 Bugs

Noticed a few bugs concerning uninstallation that does not erase everything (and
then induces error when re-installing), and a major bug concerning socketcall
not being logged. This bug is known, and is being currently fixed.

Globally, however, SNARE works pretty well.

2.6 Benchmarks

Benchmarks [VS96] have been run on a Pentium IV, 2.4 Ghz, running a Redhat
7.3 Linux. Results compare a system without SNARE, and a system that runs
snare-core 0.9.1 with kernel logs (open, rename, chmod, setuid, setgid, chown,
truncate, execve, socketcall, reboot, exit, create, mknod, link, mkdir, unlink,
rmdir, symlink, create module activated). Benchmarks have been run ten times
without SNARE, and ten times with SNARE.

In most cases, results were roughly similar, except for a few particular tests
shown at table 2.6. Please note that for open & close, fork, exec and sh tests,
results are in microsecond (smaller number is the better), and for mmap and
bcopy results are in MB/s (biggest number is the better).

Test Basic With SNARE Overhead
Open, Close 2.5ms 215 ms +8500%
Fork 112 ms 374 ms +234%
Exec 392 ms 1365 ms +248%
Sh proc 2165 ms 2863 ms +32%
Mmap 1734 MB/s 796 MB/s -54%
Bcopy 440 MB/s 221 MB/s -50%

Table 1: Benchmarking of SNARE on a Pentium IV 2.4GHz



6 Evaluation of security audit tools - v0.4 - A. Apvrille

From those results, we see that kernel auditing is very demanding.
On the other hand, the nice thing about snare is that it rarely consumed

more than 5% of the host’s CPU (and more often around 1%).

2.7 Pros and cons

Type Pros Cons
Ease of use No kernel patch needed. SNARE

is loaded as a kernel module
Impossible to set contextual log
conditions such as “if process A
launches process B, then log. If
B is launched directly, ignore”.
In objective mode, information
you need tends never to be
logged... Difficult to set really
good filters.

Performance There’s at least one indirection
for each system call.

No bottleneck General slowdown of the ma-
chine.

Security Logs are not digitally signed and
can be tampered with

Logs use a sequence number.
The idea of ordering logs is good.

Useless on a security point of
view, as sequence numbers are
predictible.
Time of logs is not guaranteed as
there is no secure timestamp.
Logs severity is written in the
logfile. If severity levels are
changed, old logs are not re-
tagged.

3 SDSC Secure Syslog

3.1 In brief

Name SDSC Secure Syslog
URL http://security.sdsc.edu/software/sdsc-syslog
Tested version(s) sdscsyslog 1.0.0 RC6
Support Through mailing-list at http://lists.sdsc.edu/

mailman/listinfo/sdscsyslog

3.2 Goal of Secure Syslog

Secure Syslog is not an auditing system as Snare, and even less an IDS. Secure
Syslog is “simply” an enhanced syslog package we pay attention to because:

• it is designed for high volume of system logs,



Evaluation of security audit tools - v0.4 - A. Apvrille 7

• it is designed to secure logging.

3.3 Installation and configuration

This package uses the regular ./configure, make and make install process.
The following files are installed.

• /usr/local/sbin/syslogd: SDSC’s syslog daemon.

• /usr/local/share/SDSCSyslogd: default package installation path, con-
taining sample configuration files and README. Documentation is avail-
able through man syslogd and man syslogd.conf, but is not up-to-date.

• /usr/local/etc/syslogd.conf: default location for the configuration
file. Otherwise, launch binary with -c option and path to config. file.

Note: create /usr/local/var/run if it doesn’t exist or syslogd will not launch.

Feb 24 17:22:23 glacier su(pam_unix)[4306]: session closed for user root
Feb 24 17:22:27 glacier su(pam_unix)[4532]: authentication failure;

logname=lmcaxpr uid=500
euid=0 tty= ruser=lmcaxp

rhost= user=root
Feb 24 17:22:33 glacier su(pam_unix)[4534]: session opened for user root

by lmcaxpr(uid=500)
Feb 24 17:22:45 glacier su(pam_unix)[4534]: session closed for user root
Feb 24 17:23:48 glacier su(pam_unix)[4579]: session opened for user root

by lmcaxpr(uid=500)

Figure 5: Sample SDSC Syslog logs.



8 Evaluation of security audit tools - v0.4 - A. Apvrille

3.4 Pros and cons

Type Pros Cons
Ease of use Capable of logging logs sent by

various hosts.
Very poor documentation.

An XML format of logs is offered
via the cooked format type

This is a syslog utility. Ab-
solutely no way to specify pre-
cisely under what conditions
event should be logged.

Security Security features of Secure Sys-
log are meant to be provided by
implementing BEEP [RFC3080],
which offers message integrity,
confidentiality and authentica-
tion through [TLS] or [SASL].
However, currently only reliable
delivery of logs [RFC3195]of logs
is implemented.

4 Secure Auditing for Linux

4.1 In brief

Name SAL: Secure Auditing for Linux
URL http://secureaudit.sourceforge.net
Tested version(s) SAL 1.0 RC3
Support Through mailing-list secureaudit-general@lists.

sourceforge.net, but not very active.

4.2 How SAL works

SAL is a research project funded by the DARPA. Its goal is explicitly to pro-
vide US Defense departments with a C2 compliant Linux, implementing kernel
auditing.

SAL’s architecture is based on a log server, named SAL Log Server (SLS),
multiple clients (SAL Instrumented Client (SIC)), and secure tunnels between
each SIC and the SLS (Secure Network Transmission Tunnel (SNTT)).

On each SIC, the kernel source is patched to instrument a given selection of
system calls. Each time an audited system call is called, audit events get gen-
erated and stored in kernel level system buffers. Periodically, an audit daemon
(auditd) dumps those kernel buffers onto the disk in so-called little files.

The patching of the kernel is done automatically by calling the patches/
sal-conf.pl script. Basically, this Perl script patches the kernelDir/arch/
i386/kernel/entry.S file. It adds two system calls (implemented in dev/
audit.c):



Evaluation of security audit tools - v0.4 - A. Apvrille 9

• syscall audit which is called after each system call to audit (a je auditsys
jump is inserted after each system call in entry.S). This system call collects
information about the audited system call (in a struct syscall buf),
and stores it in a internal kernel buffer.

• and sys audit, which retrieves information from the kernel buffer and
copies it to user space buffer. This is typically called by the the audit
daemon auditd.

Then, an application named auditclient is in charge of reading those little
files and sending them to the SLS, through a tunnel encrypted and authenticated
by OpenSSL tools.

On the SLS, the sald application listens to connections from various audit-
client programs, and receives the audited data. It adds some further information
(such as time of receipt), and stores that data onto a storage media (disk, se-
quential device...). Furthermore, an application named archiver is responsible
for continuously verifying the integrity of previously recorded data. If there’s
evidence logs have been tampered with, alarms can be raised.

4.3 Installing SAL

UNDER PROGRESS.



10 Evaluation of security audit tools - v0.4 - A. Apvrille

4.4 Pros and cons

Type Pros Cons
Ease of use Excellent design documentation Installation process is rather dif-

ficult (and manual), and not that
much documented.

Capable of auditing multiple
clients.

Kernel needs to be recompiled at
each change of system calls to au-
dit.
Rather complicated system.

Security SIC are authenticated by the
SLS

Is SLS authenticated by SICs ?

The idea of writing logs on se-
quential (and optionally remote)
storage data is good.

No explanation is provided con-
cerning how data can be pre-
vented from tampering. As a
matter of fact, this is a big issue,
and even using CD-Rs or optical
disks do not solve all security is-
sues [WORM02, WormFTP02].
Little files are not sealed nor
signed ?

Difficult for an attacker to in-
tentionally stop the auditing as
the audited data is gathered from
the kernel: (1) stopping the au-
diting applications will not stop
the kernel from gathering events,
and (2) there’s no kernel module
to unload.

Performance SAL handles network failures be-
tween SLS and SICs

Documentation says they have
demonstrated SAL does not lose
events, but they do not provide
any numerical results, nor bench-
marks of the whole system.

If auditd crashes, events will be
lost only once the kernel buffer
are full

No numerical impact provided
regarding this fact.

Use of multiple processes (and
threads) make it possible to do
work when there’s time to do so.
This reduces bottleneck proba-
bilities

No numerical results.

Auditing code is compiled stat-
ically at kernel level, which
should reduce overhead

No numerical results provided.



Evaluation of security audit tools - v0.4 - A. Apvrille 11

5 EVLOG

5.1 In brief

Name EVLOG: Linux Event Logging for the Enterprise
URL https://sourceforge.net/projects/evlog
Tested version(s)
Support Through mailing-list at evlog-developers@lists.

sourceforge.net

5.2 Goal of EVLOG

In short, EVLOG’s goal is to provide a greatly improved open-source logging
facility, that’d be more ’professional’ than syslogd (i.e targetting medium to
large servers of entreprises). To do so, its implementation complies to the current
POSIX draft for logging [PX1003].

Applied to the context of security auditing, EVLOG provides some nice
features compared to syslogd:

• kernel logs can be sent to any facility, whereas syslogd only send them to
LOG KERN.

• it’s possible to notify end-user of a given event.

• both a standardized set of data (textual information) and customized data
(binary format) may be logged.

• tools to extract, filter of view logs are provided

A more extensive comparison may be found at http://evlog.sourceforge.
net/why_not_just_use_syslog.html.

5.3 Pros and Cons

Type Pros Cons
Ease of use A lot of documentation concern-

ing design and event logging
standards

Kernel needs to be patched and
recompiled (BTW: 2.4.17 is not
supported).

Capable of logging events of mul-
tiple hosts
Capability to log data in text
and/or binary format

More complicated.

Security Security is not taken into ac-
count. Basically, EVLOG does
not offer more security than sys-
logd.

Performance logs may be gzipped ... but at significant processing
cost
Not much information provided



12 Evaluation of security audit tools - v0.4 - A. Apvrille

To summarize, to my opinion, EVLOG really focuses on the logging system
(as syslogd), but it does not deal at all with auditing (for instance, which system
calls to audit or not, and how), nor with security (guaranteeing integrity of logs,
reliability, ordering etc).

6 Conclusion

6.1 What seems to be lacking in existing auditing systems

• impossible to audit several machines together. Sometimes, it’s possible
to forward all logs to a single host, but in all cases, machines are always
audited independently. This means that if a host A accesses to host B, logs
on A will say “A accesses IP address x”, and “B receives connection from
IP address y” but both logs will not be linked. In a cluster, that would
mean the administrator would have to check audit of all nodes seperatly
(and analyze logs to understand their links).

• lack of contextual logs. For instance, it is impossible to differentiate
launching a new shell from a given program, or from another existing
shell.

• most of the time, security of logs is missing (or only partially imple-
mented). See §6.2 for a list of security requirements for logging systems.
Usually, the problem is to find a compromise between performance (high
volume of logs being received) and security (which consumes CPU...). It
is very likely that specific dedicated protocols and algorithms should be
used for that very issue.

6.2 Secure logging requirements

If DSI is involved in developping a new logging system, particular attention
should probably be taken concerning the following:

• secure programming, such as ignored malformed messages ([RFC3164,
§6.1]).

• authenticating sender of messages ([RFC3164, §6.2]), including de-
tecting message forgery (an intruder sending fake messages [RFC3164,
§6.2]).

• message integrity ([RFC3164, §6.5]). In practice, it is very difficult
to guarantee that logs have not been tampered with (for instance, what
happens if somebody forges from scratch completely new data ?). Re-
search has already been conducted in that area by StorageTek [WORM02,
WormFTP02].

• message confidentiality: under some circumstances, encryption of log
messages may be required during transmission, or once logged.



Evaluation of security audit tools - v0.4 - A. Apvrille 13

• guaranteeing order of logs at reception. It is difficult to guarantee
that if two logs are sent one after the other, they will be received and
logged in the same order (for instance, because syslog uses UDP, and also
because hosts may not be synchronized). However, at least, it should be
possible to guarantee that events that are logged are in the right order
of reception. An intruder should not be able to tamper successfully this
order, ie there should be a way to check order of received logs is correct.

• reliable delivery: being able to guarantee logs are not lost. Actually,
this is a difficult task ([RFC3164, §6.4]).

6.3 Actions

1. Seperate auditing and logging. Dealing altogether with both is too
heavy a task. Maybe we should focus on one of those first. Probably,
auditing would be chosen first as DSI can contribute more in that area,
however there is a real need for a secure logging system. At first, messages
could be processed by a basic syslog or klog system.

2. Contextual and homogeneous logs seems to be areas where DSI could
contribute.

3. Logging and law: there is a strong need on a legal point of view to be
able to prove logs of a machine are correct. This is important and has
been pointed out by multiple projects [SAL, WORM02, WormFTP02].

7 Contact people

The DSI team:

• DSI on Sourceforge [DSI],

• Axelle Apvrille : Axelle.Apvrille@Ericsson.ca,

• Makan Pourzandi : Makan.Pourzandi@Ericsson.ca,

• Gabriel Ioan Ivascu : Gabriel-Ioan.Ivascu@polymtl.ca,

• Marc Chatel: Marc.Chatel@Ericsson.ca.

References

[Al0] Aleph One, Smashing the Stack for Fun and Profit, Phrack 49, Vol. 7, file
14/16.

[DSI] The Distributed Security Infrastructure Project, http://sourceforge.
net/projects/disec.



14 Evaluation of security audit tools - v0.4 - A. Apvrille

[PX1003] Standard for Information Technology - Portable Operating System In-
terface (POSIX) - Event Logging, System API - Services for Reliable, Avail-
able, and Serviceable Systems, P1003.25 (draft). http://www.ieee.org

[RFC3080] M. Rose, The Blocks Extensible Exchange Protocol Core, Network
Working Group, RFC 3080, March 2001.

[RFC3164] C. Lonvick The BSD syslog protocol, Network Working Group, RFC
3164, August 2001.

[RFC3195] D. New, M. Rose, Reliable Delivery for syslog, Network Working
Group, RFC 3195, November 2001.

[SAL] Secure Auditing for Linux, Software Design Document, Version 1.0,
February 28 2003, http://secureaudit.sourceforge.net

[SASL] Myers, J., Simple Authentication and Security Layer (SASL), RFC
2222, October 1997.

[TLS] Dierks, T., Allen, C., Treese, W., Karlton, P., Freier, A. and P. Kocher
The TLS Protocol Version 1.0 RFC 2246, January 1999.

[VS96] Mc Voy L., Staelin C. LmBench: portable tools for performance analysis,
in Proceedings of the 1996 USENIX Annual Technical Conference, http:
//www.bitmover.com/lmbench.

[WORM02] Apvrille A., Hughes J., A Time Stamped Virtual WORM System,
Workshop SECI02 SEcurité de la Communication sur Intenet, September
2002, Tunis, Tunisa.

[WormFTP02] Apvrille A., Hughes J., Girier. V., Streamed or Detached Triple
Integrity for a Time Stamped Secure Storage System, First IEEE Interna-
tional Security In Storage Workshop, December, 2002, Greenbelt, Mary-
land, USA.


